Home
Menu
Projects
About Me
Skills
Blog
Yünticu
Stress Testing the Blog with LaTeX
March 4, 2025
5 minute read
First Impressions
Old Notion Stuff
Centroids
DiffEq
I really like sigma
First Impressions
∮
C
E
⋅
d
ℓ
=
−
d
d
t
∫
S
B
n
d
A
V
=
I
R
=
I
(
L
σ
A
)
=
I
(
ρ
L
A
)
\oint_C {E \cdot d\ell = - \frac{d}{{dt}}} \int_S {B_n dA} \\ V = IR = I\left( {\frac{L}{{\sigma A}}} \right) = I\left( {\frac{{\rho L}}{A}} \right)
∮
C
E
⋅
d
ℓ
=
−
d
t
d
∫
S
B
n
d
A
V
=
I
R
=
I
(
σ
A
L
)
=
I
(
A
ρ
L
)
Old Notion Stuff
Centroids
x
ˉ
=
lim
n
→
∞
[
∑
i
=
1
n
x
ˉ
i
f
(
x
i
ˉ
)
Δ
x
∑
i
=
1
n
f
(
x
ˉ
i
)
Δ
x
]
y
ˉ
=
1
2
lim
n
→
∞
[
∑
i
=
1
n
f
(
x
ˉ
i
)
2
Δ
x
∑
i
=
1
n
f
(
x
ˉ
i
)
Δ
x
]
x
ˉ
=
∫
a
b
x
f
(
x
)
d
x
∫
a
b
f
(
x
)
d
x
y
ˉ
=
1
2
∫
a
b
f
(
x
)
2
d
x
∫
a
b
f
(
x
)
d
x
\bar{x} = \lim_{n\to\infty}[\frac{\sum_{i=1}^n \bar{x}_if(\bar{x_i})\Delta{x}}{\sum_{i=1}^n f(\bar{x}_i)\Delta{x}}] \quad \bar{y} = \frac{1}{2}\lim_{n\to\infty}[\frac{\sum_{i=1}^n f(\bar{x}_i)^2 \Delta x}{\sum_{i=1}^n f(\bar{x}_i) \Delta x}] \\~\\ \bar{x} = \frac{\int_a^b xf(x) \,dx}{\int_a^b f(x) \,dx} \quad \bar{y} = \frac{\frac{1}{2} \int_a^b f(x)^2 \,dx}{\int_a^b f(x) \,dx}
x
ˉ
=
n
→
∞
lim
[
∑
i
=
1
n
f
(
x
ˉ
i
)
Δ
x
∑
i
=
1
n
x
ˉ
i
f
(
x
i
ˉ
)
Δ
x
]
y
ˉ
=
2
1
n
→
∞
lim
[
∑
i
=
1
n
f
(
x
ˉ
i
)
Δ
x
∑
i
=
1
n
f
(
x
ˉ
i
)
2
Δ
x
]
x
ˉ
=
∫
a
b
f
(
x
)
d
x
∫
a
b
x
f
(
x
)
d
x
y
ˉ
=
∫
a
b
f
(
x
)
d
x
2
1
∫
a
b
f
(
x
)
2
d
x
DiffEq
d
y
d
x
=
x
y
=
x
1
y
1
y
d
y
=
x
d
x
∫
1
y
d
y
=
∫
x
d
x
ln
∣
y
∣
=
x
2
2
+
C
∣
y
∣
=
e
x
2
2
+
C
y
=
±
e
x
2
2
+
C
=
±
e
C
e
x
2
2
\begin{align} \frac{dy}{dx} &= xy = \frac{x}{\frac{1}{y}}\\ \frac{1}{y} \,dy &= x \,dx\\ \int{\frac{1}{y} \,dy} &= \int{x \,dx}\\ \ln|y| &= \frac{x^2}{2} + C\\ |y| &= e^{\frac{x^2}{2} + C}\\ y &= \pm e^{\frac{x^2}{2} + C}\\ &= \pm e^C e^{\frac{x^2}{2}} \end{align}
d
x
d
y
y
1
d
y
∫
y
1
d
y
ln
∣
y
∣
∣
y
∣
y
=
x
y
=
y
1
x
=
x
d
x
=
∫
x
d
x
=
2
x
2
+
C
=
e
2
x
2
+
C
=
±
e
2
x
2
+
C
=
±
e
C
e
2
x
2